Aspen Bibliography
Partitioning of population genetic variance under multiplicative-epistatic gene action
Document Type
Article
Journal/Book Title/Conference
Theoretical and Applied Genetics
Volume
100
Issue
5
First Page
743
Last Page
749
Publication Date
2000
Abstract
Determining the way in which different QTLs interact (epistasis) in their effects on the phenotype is crucial to many areas in population genetics and evolutionary biology. For example, in the founder event, a separated population readapts to a new environment through the release of cryptic gene-gene interactions. In hybrid zones, hybrid speciation must be subjected to natural selection for epistasis resulting from genomic recombinations between different species. However, there is a severe shortage of relevant methodologies to estimate epistatic genetic effects and variances. A statistical model has recently been proposed to estimate the number of QTLs, their genetic effects and allelic frequencies in segregating populations. This model is based on multiplicative gene action and derived from a two-level intra- and interspecific mating design. In this paper, we formulate a statistical procedure for partitioning the genetic variance into additive, dominant and various kinds of epistatic components in an intra- or mixed intra- and interspecific hybrid population. The procedure can be used to study the genetic architecture of fragmented populations and hybrid zones, thus allowing for a better recognition of the role of epistasis in evolution and hybrid speciation. A real example for two Populus species, P. tremuloides and P. tremula, is provided to illustrate the procedure. In this example, we found that considerable new genetic variation is formed through genomic recombination between two aspen species.
Recommended Citation
Wu, R. Partitioning of population genetic variance under multiplicative-epistatic gene action. Theor Appl Genet 100, 743–749 (2000). https://doi.org/10.1007/s001220051347
Comments
Determining the way in which different QTLs interact (epistasis) in their effects on the phenotype is crucial to many areas in population genetics and evolutionary biology. For example, in the founder event, a separated population readapts to a new environment through the release of cryptic gene-gene interactions. In hybrid zones, hybrid speciation must be subjected to natural selection for epistasis resulting from genomic recombinations between different species. However, there is a severe shortage of relevant methodologies to estimate epistatic genetic effects and variances. A statistical model has recently been proposed to estimate the number of QTLs, their genetic effects and allelic frequencies in segregating populations. This model is based on multiplicative gene action and derived from a two-level intra- and interspecific mating design. In this paper, we formulate a statistical procedure for partitioning the genetic variance into additive, dominant and various kinds of epistatic components in an intra- or mixed intra- and interspecific hybrid population. The procedure can be used to study the genetic architecture of fragmented populations and hybrid zones, thus allowing for a better recognition of the role of epistasis in evolution and hybrid speciation. A real example for two Populus species, P. tremuloides and P. tremula, is provided to illustrate the procedure. In this example, we found that considerable new genetic variation is formed through genomic recombination between two aspen species.