Aspen Bibliography
Document Type
Article
Journal/Book Title/Conference
Journal of Ecology
Volume
108
Issue
1
Publisher
Wiley-Blackwell Publishing Ltd.
First Page
175
Last Page
188
Publication Date
9-26-2019
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
- Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods.
- We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods.
- We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen's kappa of c. 0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales.
- Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species' responses to climate change.
Recommended Citation
Blonder, B., B. J. Graae, B. Greer, M. Haagsma, K. Helsen, R. E. Kapás, H. Pai, J. Rieksta, D. Sapena, and C. J. Still. 2020. Remote sensing of ploidy level in quaking aspen (Populus tremuloides Michx.). Journal of Ecology 108:175-188.
Included in
Agriculture Commons, Ecology and Evolutionary Biology Commons, Forest Sciences Commons, Genetics and Genomics Commons, Plant Sciences Commons