Aspen Bibliography
Document Type
Article
Journal/Book Title/Conference
ZooKeys
Volume
1044
Publisher
Pensoft Publishers
First Page
951
Last Page
991
Publication Date
6-16-2021
Creative Commons License
This work has been identified with a Creative Commons Public Domain Mark 1.0.
Abstract
Epigaeic beetle assemblages were surveyed using continuous pitfall trapping during the summers of 1992 and 1993 in six widely geographically distributed locations in Alberta’s aspen-mixedwood forests prior to initial forest harvest. Species composition and turnover (β-diversity) were evaluated on several spatial scales ranging from Natural Regions (distance between samples 120–420 km) to pitfall traps (40–60 m). A total of 19,885 ground beetles (Carabidae) representing 40 species and 12,669 rove beetles (non-Aleocharinae Staphylinidae) representing 78 species was collected. Beetle catch, species richness, and diversity differed significantly among the six locations, as did the identity of dominant species. Beetle species composition differed significantly between the Boreal Forest and Foothills Natural Regions for both taxa. Staphylinidae β-diversity differed significantly between Natural Regions, whereas Carabidae β-diversity differed among locations. Climate variables such as number of frost-free days, dry periods, and mean summer temperatures were identified as significant factors influencing beetle assemblages at coarse spatial scales, whereas over- and understory vegetation cover, litter depth, shade, slope, and stand age influenced beetle assemblages at finer spatial scales. Significant interannual variation in assemblage structure was noted for both taxa. Because composition of epigaeic beetle assemblages differed across spatial scales, forest management strategies based only on generalized understanding of a single location will be ineffective as conservation measures. In addition, site history and geographic variation significantly affect species distributions of these two beetle families across the landscape. Thus, we underscore Terry Erwin’s suggestion that biodiversity assessments focused on species assemblages at different spatial scales provide a sound approach for understanding biodiversity change and enhancing conservation of arthropod biodiversity.
Recommended Citation
Hammond HEJ, García-Tejero S, Pohl GR, Langor DW, Spence JR (2021) Spatial and temporal variation of epigaeic beetle assemblages (Coleoptera, Carabidae, Staphylinidae) in aspen-dominated mixedwood forests across north-central Alberta. In: Spence J, Casale A, Assmann T, Liebherr JК, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020). ZooKeys 1044: 951-991. https://doi.org/10.3897/zookeys.1044.65776
Included in
Agriculture Commons, Ecology and Evolutionary Biology Commons, Forest Sciences Commons, Genetics and Genomics Commons, Plant Sciences Commons