Document Type


Journal/Book Title/Conference

Earth, Planets and Space







Publication Date



Recent imager and radar observations in the nightside polar cap have shown evidence that polar cap patches are associated with localized flow channels. To understand how flow channels propagate from the dayside auroral oval into the polar cap, we use an all-sky imager in Antarctica and DMSP (F13, F15, F16, F17 and F18) to determine properties of density and flows associated with dayside polar cap patches. We identified 50 conjunction events during the southern winter seasons of 2007–2011. In a majority (45) of events, longitudinally narrow flow enhancements directed anti-sunward are found to be collocated with the patches, have velocities (up to a few km/s) substantially larger than the large-scale background flows (~500 m/s) and have widths comparable to patch widths (~400 km). While the patches start with poleward moving auroral forms (PMAFs) as expected, many PMAFs propagate azimuthally away from the noon over a few hours of MLT, resulting in formation of polar cap patches quite far away from the noon, as early as ~6 MLT. The MLT separation from the noon is found to be proportional to the IMF |By|. Fast polar cap flows of >~1500 m/s are predominantly seen during large IMF |By| and small |Bz|. The presence of fast, anti-sunward flow channels associated with the polar cap patches suggests that the flow channels form in the dayside auroral oval through transient reconnection and can be the source of flow channels propagating into the polar cap.