Document Type
Report
Publisher
Center for Atmospheric and Space Sciences, Utah State University
Publication Date
Spring 1997
Abstract
This paper presents the neutral -wind climatology at approximately 87-km 53 altitude from Utah State University's Bear Lake Observatory (BLO). a mid-latitude site 54 situated in the middle of the Rocky Mountains. The winds were determined using a very 55 sensitive Fabry-Perot interferometer (FPI) observing the OH Me inel (6-2) PI (3) line al 56 843 nm. The climatology. determined from monthly averages of the nightly evolution of 57 the geographic meridional and zonal wind components over forty· five months, has three 58 distinct seasonal patterns: winter (November- February), summer (May-Jul y), and late 59 Slimmer (August and September). The background zonal wind is eastward the whole year 60 except March and April. The background meridional wind is northward in winter and 61 southward during the rest of the year. In late summer. the winds exhibit a very strong 62 semidiurnal tidal variation almost every night. In summer, they exhibit a similar tidal 63 variation on enough nights that a semi diurnal pattern appears in the climatology. In 64 winter. the nighHo·night variability is so great that little structure is evident in the 65 climatology . These winds are compared to those from other techniques or sites: ~l 66 observations from UARS. FPI observations from Michigan, and MF radar observations. 67 While generally agreeing in relative amplitudes and i.n phase. differences do exist. 68 especially the weak semidiurnal tide at BLO in winter and a greatly reduced {tide at spring 69 equinox compared to late summer. It is likely that these differences arise from the 2 70 topographical generation of gravity waves by winds flowing over the Rocky Mountains. 71 The tidal variations are also compared to results from the global-scale wave model 72 (GSWM): our semidiurnal amplitudes arc considerably bigger except in winter, and our 73 phases vary from showing very good agreement in July, fair agreement in April and 74 January, and disagreement in October. These large differences may be evidence that 11011 - 75 linear effects are more important than realized. The behavior of the background winds is 76 consistent with different populations of gravity waves reaching 87 km in summer and 77 winter. The behavior of the semidiurnal tidal variation is consistent' with a strong 78 interaction between the tidal and gravity·wave wind fields, and is consistent with the 79 different summer and Winter gravity wave population s, and with a fall· spring asymmetry 80 characterized by much weaker gravity wave sources in late summer than near spring 81 equinox.
Recommended Citation
Wickwar, V. B.; Monson, I K.; Vadnais, C M.; and Rees, D, "Wind Climatology at 87 km above the Rocky Mountains at Bear Lake Observatory--Fabry-Perot Observations of OH" (1997). Reports. Paper 1.
https://digitalcommons.usu.edu/atmlidar_rep/1
Included in
Atmospheric Sciences Commons, Climate Commons, Physics Commons