The Effects of Mechanical Fuel Reduction Treatments on the Activity of Bark Beetles (Coleoptera: Scolytidae) Infesting Ponderosa Pine

Document Type

Article

Journal/Book Title/Conference

Forest Ecology and Management

Publication Date

2006

Issue

1-3

Volume

230

First Page

55

Last Page

68

Abstract

Selective logging, fire suppression, forest succession and climatic changes have resulted in high fire hazards over large areas of the western USA. Federal and state hazardous fuel reduction programs have increased accordingly to reduce the risk, extent and severity of these events, particularly in the wildland–urban interface. In this study, we examined the effects of mechanical fuel reduction treatments on the activity of bark beetles in ponderosa pine, Pinus ponderosa Dougl ex. Laws., forests located in Arizona and California, USA. Treatments were applied in both late spring (April–May) and late summer (August–September) and included: (1) thinned biomass chipped and randomly dispersed within each 0.4 ha plot; (2) thinned biomass chipped, randomly dispersed within each plot and raked 2 m from the base of residual trees; (3) thinned biomass lopped- and-scattered (thinned trees cut into 1–2 m lengths) within each plot; (4) an untreated control. The mean percentage of residual trees attacked by bark beetles ranged from 2.0% (untreated control) to 30.2% (plots thinned in spring with all biomass chipped). A three-fold increase in the percentage of trees attacked by bark beetles was observed in chipped versus lopped-and-scattered plots. Bark beetle colonization of residual trees was higher during spring treatments, which corresponded with peak adult beetle flight periods as measured by funnel trap captures. Raking chips away from the base of residual trees did not significantly affect attack rates. Several bark beetle species were present including the roundheaded pine beetle, Dendroctonus adjunctus Blandford (AZ), western pine beetle, D. brevicomis LeConte (AZ and CA), mountain pine beetle, D. ponderosae Hopkins (CA), red turpentine beetle, D. valens LeConte (AZ and CA), Arizona fivespined ips, Ips lecontei Swaine (AZ), California fivespined ips, I. paraconfusus Lanier (CA) and pine engraver, I. pini (Say) (AZ). Dendroctonus valens was the most common bark beetle infesting residual trees. A significant correlation was found between the number of trees chipped per plot and the percentage of residual trees with D. valens attacks. A significantly higher percentage of residual trees was attacked by D. brevicomis in plots that were chipped in spring compared to the untreated control. In lopped-and-scattered treatments, engraver beetles produced substantial broods in logging debris, but few attacks were observed on standing trees. At present, no significant difference in tree mortality exists among treatments. A few trees appeared to have died solely from D. valens attacks, as no other scolytids were observed in the upper bole. In a laboratory study conducted to provide an explanation for the bark beetle responses observed in this study, monoterpene elution rates from chip piles declined sharply over time, but were relatively constant in lopped-and-piled treatments. The quantities of b-pinene, 3-carene, a-pinene and myrcene eluting from chips exceeded those from lopped-and- piled slash during each of 15 sample periods. These laboratory results may, in part, explain the bark beetle response observed in chipping treatments. The implications of these results to sustainable forest management are discussed.

Share

COinS