Mechanisms of Douglas-fir Resistance to Western Spruce Budworm Defoliation: Bud Burst Phenology, Photosynthetic Compensation and Growth Rate

Document Type

Article

Journal/Book Title/Conference

Tree Physiology

Publication Date

2001

Issue

16

Volume

21

Publisher

Oxford University Press

First Page

1159

Last Page

1169

Abstract

We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.

Share

COinS