Fungal tyrosine betaine, a novel seconday metabolite from conidia of entomopathogenic Metarhizium spp. fungi.

Carlos A. Carollo
Ana Luiza A. Calil
Letícia A. Schiave
Thais Guaratini
Donald W. Roberts, Utah State Univeristy
Norberto P. Lopes
Gilberto U. L. Braga

Abstract

Fungi, including the entomopathogenic deuteromycete Metarhizium anisopliae, produce a wide diversity of secondary metabolites that either can be secreted or stored in specific developmental structures, e.g., conidia. Some secondary metabolites, such as pigments, polyols and mycosporines, are associated with pathogenicity and/or fungal tolerance to several stress-inducing environmental factors, including temperature and solar radiation extremes. Extracts of M. anisopliae var. anisopliae (strain ESALQ-1037) conidia were purified by chromatographic procedures and the isolated compounds analyzed by 1H and 13C nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. LC–MS analyses were carried out to search for mycosporines (the initial targets), but no compounds of this class were detected. A molecule whose natural occurrence was previously undescribed was identified. It consists of betaine conjugated with tyrosine, and the structure was identified as 2-{[1-carboxy-2-(4-hydroxyphenyl)ethyl]amino}-N,N,N-trimethyl-2-oxoethanammonium. Mannitol was the predominant compound in the alcoholic conidial extract, but no amino acids other than tyrosine were found to be conjugated with betaine in conidia. The fungal tyrosine betaine was detected also in conidial extracts of three other M. anisopliae var. anisopliae (ARSEF 1095, 5626 and 5749) and three M. anisopliae var. acridum isolates (ARSEF 324, 3391 and 7486), but it was not detected in Aspergillus nidulans conidial extract (ATCC 10074).