Utilizing Recombinant Spider Silk Proteins to Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium
Document Type
Article
Journal/Book Title/Conference
ACS Biomaterials Science and Engineering
Volume
5
Issue
8
Publisher
American Chemical Society
Publication Date
7-2-2019
First Page
4023
Last Page
4036
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Recommended Citation
(2019) Thomas I. Harris, Chase A. Paterson, Farhad Farjood, Ian D. Wadsworth, Lori Caldwell, Randolph V. Lewis, Justin A. Jones, Elizabeth Vargis, Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruchs Membrane for Modeling the Retinal Pigment Epithelium, ACS Biomaterials Science + Engineering (10.1021/acsbiomaterials.9b00183)