Abstract

The VIIRS Day-Night Band (DNB) is designed with 3 gain stages: Low (LGS), Mid (MGS) and High (HGS) to span bright daytime to moonlit night earth scene signal levels. The published at-launch DNB relative spectral response (RSR) is based upon the LGS spectral measurements, since it was well measured in the pre-launch test program and the LGS can be calibrated by the on-board solar diffuser (MGS and HGS saturate on the SD). The LGS RSR however does not fully represent the spectral characteristics of nighttime DNB data from the MGS and HGS. Nighttime data users who apply the detailed DNB spectral characteristics in their analyses should use modulated RSR appropriate to the MGS and HGS observations. The RSR modulation is due to spectral darkening of the 4 mirrors of the S-NPP VIIRS telescope, which were contaminated with tungsten oxides in fabrication. These tungsten oxides are ‘in family’ with transition lenses on eyeglasses that darken when exposed to sunlight but do not recover when VIIRS goes into darkness because VIIRS in space is in a vacuum (transition lenses require atmospheric oxygen to recover). The on-going mirror darkening has caused a time-dependent shift in DNB RSR towards blue wavelengths. This presentation will provide access to the correct RSR to use for S-NPP DNB nighttime data over the mission time on-orbit. The changes in characteristics will be described in engineering terms to facilitate clear user understanding of how to handle RSR for nighttime observations over the mission lifetime.

Share

COinS
 
Aug 23rd, 10:00 AM

VIIRS S-NPP Nighttime DNB Spectral Response Function (SRF): The At-launch Characteristics and How the SRF Changes with Time Due to Tungsten Oxides Chromaticity

The VIIRS Day-Night Band (DNB) is designed with 3 gain stages: Low (LGS), Mid (MGS) and High (HGS) to span bright daytime to moonlit night earth scene signal levels. The published at-launch DNB relative spectral response (RSR) is based upon the LGS spectral measurements, since it was well measured in the pre-launch test program and the LGS can be calibrated by the on-board solar diffuser (MGS and HGS saturate on the SD). The LGS RSR however does not fully represent the spectral characteristics of nighttime DNB data from the MGS and HGS. Nighttime data users who apply the detailed DNB spectral characteristics in their analyses should use modulated RSR appropriate to the MGS and HGS observations. The RSR modulation is due to spectral darkening of the 4 mirrors of the S-NPP VIIRS telescope, which were contaminated with tungsten oxides in fabrication. These tungsten oxides are ‘in family’ with transition lenses on eyeglasses that darken when exposed to sunlight but do not recover when VIIRS goes into darkness because VIIRS in space is in a vacuum (transition lenses require atmospheric oxygen to recover). The on-going mirror darkening has caused a time-dependent shift in DNB RSR towards blue wavelengths. This presentation will provide access to the correct RSR to use for S-NPP DNB nighttime data over the mission time on-orbit. The changes in characteristics will be described in engineering terms to facilitate clear user understanding of how to handle RSR for nighttime observations over the mission lifetime.