Applicability of statistical learning algorithms in groundwater quality modeling
Document Type
Article
Journal/Book Title/Conference
Water Resources Research
Volume
41
Issue
5
Publication Date
5-12-2005
Abstract
Four algorithms are outlined, each of which has interesting features for predicting contaminant levels in groundwater. Artificial neural networks (ANN), support vector machines (SVM), locally weighted projection regression (LWPR), and relevance vector machines (RVM) are utilized as surrogates for a relatively complex and time-consuming mathematical model to simulate nitrate concentration in groundwater at specified receptors. Nitrates in the application reported in this paper are due to on-ground nitrogen loadings from fertilizers and manures. The practicability of the four learning machines in this work is demonstrated for an agriculture-dominated watershed where nitrate contamination of groundwater resources exceeds the maximum allowable contaminant level at many locations. Cross-validation and bootstrapping techniques are used for both training and performance evaluation. Prediction results of the four learning machines are rigorously assessed using different efficiency measures to ensure their generalization ability. Prediction results show the ability of learning machines to build accurate models with strong predictive capabilities and hence constitute a valuable means for saving effort in groundwater contamination modeling and improving model performance.
Recommended Citation
Abedalrazq, K.; Almasri, M. N.; McKee, Mac; and Kaluarachchi, Jagath J., "Applicability of statistical learning algorithms in groundwater quality modeling" (2005). Civil and Environmental Engineering Faculty Publications. Paper 1286.
https://digitalcommons.usu.edu/cee_facpub/1286