Pyrene fate affected by humic acid amendment in soil slurry systems

Document Type

Article

Journal/Book Title/Conference

Journal of Biological Engineering

Volume

2

Publication Date

1-1-2008

First Page

11

Last Page

11

Abstract

Background: Humic acid (HA) has been found to affect the solubility, mineralization, and bound residue formation of polycyclic aromatic hydrocarbons (PAHs). However, most of the studies on the interaction between HA and PAH concentrated on one or two of the three phases. Few studies have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in soil systems for all three phases. Methods: In this study, three doses of standard Elliott soil HA (ESHA),15, 187.5, and 1,875 μg ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems along with non-radiolabeled pyrene; 14C and 14CO2 were monitored for each system for a period of 120 days. Results: The highest amendment dose significantly increased the 14C fraction in the aqueous phase within 24 h, but not after that time. Pyrene mineralization was significantly inhibited by the highest dose over the 120-day study. While organic solvent extractable 14C decreased with time in all systems, non-extractable or bound 14C was significantly enhanced with the highest dose of ESHA addition. Conclusion: Amendment of the highest dose of ESHA to pyrene contaminated soil was observed to have two major functions. The first was to mitigate CO2 production significantly by reducing 14CO2 from 14C pyrene mineralization. The second was to significantly increase stable bound 14C formation, which may serve as a remediation end point. Overall, this study demonstrated a practical approach for decontamination of PAH contaminated soil. This approach may be applicable to other organic contaminated environments where active bioremediation is taking place. © 2008 Liang et al; licensee BioMed Central Ltd.

This document is currently not available here.

Share

COinS