Document Type
Article
Journal/Book Title/Conference
Journal of Geophysical Research F: Earth Surface
Volume
121
Issue
1
Publisher
Blackwell Publishing Ltd
Publication Date
1-1-2016
First Page
146
Last Page
167
Abstract
The large eddy simulation (LES) module of the Virtual StreamLab (VSL3D) model is applied to simulate the flow and transport of a conservative tracer in a headwater stream in Minnesota, located in the south Twin Cities metropolitan area. The detailed geometry of the stream reach, which is _135 m long, _2.5 m wide, and _0.15 m deep, was surveyed and used as input to the computational model. The detailed geometry and location of large woody debris and bed roughness elements up to _0.1 m in size were also surveyed and incorporated in the numerical simulation using the Curvilinear Immersed Boundary approach employed in VSL3D. The resolution of the simulation, which employs up to a total of 25 million grid nodes to discretize the flow domain, is sufficiently fine to directly account for the effect of large woody debris and small cobbles (on the streambed) on the flow patterns and transport processes of conservative solutes. Two tracer injection conditions, a pulse and a plateau release, and two cross sections of measured velocity were used to validate the LES results. The computed results are shown to be in good agreement with the field measurements and tracer concentration time series. To our knowledge, the present study is the first attempt to simulate via high-resolution LES solute transport in a natural stream environment taking into account a range of roughness length scales spanning an order of magnitude: From small cobbles on the streambed (_0.1 m in diameter) to large woody debris up to _3 m long. © 2016. American Geophysical Union. All Rights Reserved.
Recommended Citation
Khosronejad, A.; Hansen, A. T.; Kozarek, J. L.; Guentzel, K.; Hondzo, M.; Guala, M.; Wilcock, Peter; Finlay, J. C.; and Sotiropoulos, F., "Large eddy simulation of turbulence and solute transport in a forested headwater stream" (2016). Civil and Environmental Engineering Faculty Publications. Paper 3578.
https://digitalcommons.usu.edu/cee_facpub/3578