Document Type
Conference Paper
Journal/Book Title/Conference
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III
Volume
10664
Publisher
SPIE - International Society for Optical Engineering
Publication Date
7-16-2018
Award Number
NASA, National Aeronautics and Space Administration NNX17AF51G
Funder
NASA, National Aeronautics and Space Administration
First Page
106640E-0
Last Page
106640E-12
Abstract
With the increasing availability of thermal proximity sensors, UAV-borne cameras, and eddy covariance radiometers there may be an assumption that information produced by these sensors is interchangeable or compatible. This assumption is often held for estimation of agricultural parameters such as canopy and soil temperature, energy balance components, and evapotranspiration. Nevertheless, environmental conditions, calibration, and ground settings may affect the relationship between measurements from each of these thermal sensors. This work presents a comparison between proximity infrared radiometer (IRT) sensors, microbolometer thermal cameras used in UAVs, and thermal radiometers used in eddy covariance towers in an agricultural setting. The information was collected in the 2015 and 2016 irrigation seasons at a commercial vineyard located in California for the USDA Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program. Information was captured at different times during diurnal cycles, and IRT and radiometer footprint areas were calculated for comparison with UAV thermal raster information. Issues such as sensor accuracy, the location of IRT sensors, diurnal temperature changes, and surface characterizations are presented.
Recommended Citation
Alfonso Torres-Rua, Hector Nieto, Chistopher Parry, Manal Elarab, Wesley Collatz, Calvin Coopmans, Lynn McKee, Mac McKee, William Kustas, "Inter-comparison of thermal measurements using ground-based sensors, UAV thermal cameras, and eddy covariance radiometers," Proc. SPIE 10664, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, 106640E (16 July 2018); doi: 10.1117/12.2305832
Comments
Copyright 2018 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.