Document Type

Article

Journal/Book Title/Conference

Life

Volume

13

Issue

5

Publisher

MDPI AG

Publication Date

4-25-2023

First Page

1

Last Page

12

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Nanoparticles effectively control most plant pathogens, although research has focused more on their antimicrobial than their nematocidal properties. This study synthesized silver nanoparticles (Ag-NPs) through a green biosynthesis method using an aqueous extract of Ficus sycomorus leaves (FS-Ag-NPs). The nanoparticles were characterized using SEM, TEM, EDX, zeta sizer, and FTIR. The TEM results showed that the synthesized NPs were nanoscale and had an average particle size of 33 ± 1 nm. The elemental silver signal at 3 keV confirmed the formation of Ag-NPs from an aqueous leaf extract of F. sycomorus. The FTIR analysis revealed the existence of several functional groups in the prepared Ag-NPs. The strong-broad band detected at 3430 cm-1 indicated the stretching vibration of -OH (hydroxyl) and -NH2 (amine) groups. The nematocidal activity of biosynthesized FS-Ag-NPs has been evaluated in vitro against the root-knot nematode Meloidogyne incognita at 24, 48, and 72 h. The FS-Ag-NPs at a 200 μg/mL concentration applied for 48 h showed the highest effectiveness, with 57.62% nematode mortality. Moreover, the biosynthesized FS-Ag-NPs were also tested for their antibacterial activity against Pectobacterium carotovorum, P. atrosepticum, and Ralstonia solanacearum. With the application of nanoparticles, the reduction in bacterial growth gradually increased. The most potent activity at all concentrations was found in R. solanacearum, with values of 14.00 ± 2.16, 17.33 ± 2.05, 19.00 ± 1.41, 24.00 ± 1.41, and 26.00 ± 2.83 at concentrations of 5, 10, 15, 20, and 25 μg/mL, respectively, when compared with the positive control (Amoxicillin 25 μg) with a value of 16.33 ± 0.94. At the same time, the nanoparticles showed the lowest reduction values against P. atrosepticum when compared to the control. This study is the first report on the nematocidal activity of Ag-NPs using F. sycomorus aqueous extract, which could be a recommended treatment for managing plant-parasitic nematodes due to its simplicity, stability, cost-effectiveness, and environmentally safe nature.

Share

COinS