Competition between Rotamerization and Proton Transfer in o-Hydroxybenzaldehyde

Document Type

Article

Journal/Book Title

Journal of the American Chemical Society

Publication Date

9-1998

Publisher

American Chemical Society

Volume

120

Abstract

The proton transfer from one oxygen atom to the other within the intramolecular H-bond in a molecule like o-hydroxybenzaldehyde (oHBA) would be precluded by a prior rotational isomerism that breaks this H-bond. The likelihood of such rotamerization in the ground and several excited electronic states is investigated by ab initio calculations at the CIS and MP2 levels with a 6-31+G** basis set. In the ground state, the energetics of proton transfer and rotamerization are competitive with one another; both processes are endothermic and must surmount an energy barrier. Excitation to the singlet or triplet ����* states presents a situation where tautomerization to the keto is exothermic, with a small barrier. In contrast, rotamerization is endothermic with high intervening barriers, so excited-state proton transfer is favored. The opposite situation is encountered in the n��* states, where rotations of the hydroxyl and carbonyl groups are facile and lead energetically downhill, in contrast to the high barriers opposing endothermic tautomerization. The computations provide insights into the fundamental causes for the discrepancies between the behaviors of the ����* and n��* states.

Comments

Originally published in the Journal of the American Chemical Society by the American Chemical Society . Publisher’s PDF available through remote link. DOI: 10.1021/ja982161x

Share

COinS