Substitution Patterns in Mono-BN-Fullerenes: Cn (n = 20, 24, 28, 32, 36, and 40)
Document Type
Article
Journal/Book Title
Journal of Physical Chemistry A
Publication Date
2004
Publisher
American Chemical Society
Volume
108
Issue
38
First Page
7681
Last Page
7685
Abstract
Semiempirical MNDO and Density Functional Theory (DFT) are applied to investigate the structure and properties of Cn-2BN fullerenes, where n = 20, 24, 28, 32, 36, and 40. Low-mass fullerenes are of particular interest because of their high curvature and increased strain energy owing to adjacent pentagonal rings. The most important factor for stability is the connectedness of the heteroatoms. The BN group prefers to replace a short CC bond. N atoms tend toward smaller angles, leading them toward participation in pentagons over hexagons. The BN pair prefers hexagon−pentagon over pentagon−pentagon junctions. No systematic trends are observed in the effects of doping upon the HOMO-LUMO gap, ionization potential, and electron affinity. Whereas MNDO is unable to reliably predict the most stable isomers, single-point DFT calculations at MNDO-optimized geometries correctly reproduce the full DFT relative energy trends.
Recommended Citation
Substitution Patterns in Mono BN-Fullerenes: Cn (n = 20, 24, 28, 32, 36 and 40) J. Pattanayak, T. Kar, S. Scheiner J. Phys. Chem. A 2004 108 7681-7685
Comments
Originally published by American Chemical Society in the Journal of Physical Chemistry.
Publisher's PDF can be accessed through the remote link. May require fee or subscription.