Substitution Patterns in Mono-BN-Fullerenes:  Cn (n = 20, 24, 28, 32, 36, and 40)

Document Type

Article

Journal/Book Title

Journal of Physical Chemistry A

Publication Date

2004

Publisher

American Chemical Society

Volume

108

Issue

38

First Page

7681

Last Page

7685

Abstract

Semiempirical MNDO and Density Functional Theory (DFT) are applied to investigate the structure and properties of Cn-2BN fullerenes, where n = 20, 24, 28, 32, 36, and 40. Low-mass fullerenes are of particular interest because of their high curvature and increased strain energy owing to adjacent pentagonal rings. The most important factor for stability is the connectedness of the heteroatoms. The BN group prefers to replace a short CC bond. N atoms tend toward smaller angles, leading them toward participation in pentagons over hexagons. The BN pair prefers hexagon−pentagon over pentagon−pentagon junctions. No systematic trends are observed in the effects of doping upon the HOMO-LUMO gap, ionization potential, and electron affinity. Whereas MNDO is unable to reliably predict the most stable isomers, single-point DFT calculations at MNDO-optimized geometries correctly reproduce the full DFT relative energy trends.

Comments

Originally published by American Chemical Society in the Journal of Physical Chemistry.

Publisher's PDF can be accessed through the remote link. May require fee or subscription.

Share

COinS