Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active-Site Metal Ions in Catalysis
Document Type
Article
Journal/Book Title
Journal of the American Chemical Society
Publication Date
2007
Volume
129
Issue
31
First Page
9789
Last Page
9796
Abstract
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.
Recommended Citation
J. G. Zalatan, I. Catrina, R. Mitchell, P. K. Grzyska, P. J. O’Brien, D. Herschlag, and A. C, Hengge. “Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active- Site Metal Ions in Catalysis,” J. Am. Chem. Soc. 2007; 129 (31), 9789-9796.