Low Frequency Impedance Behavior of Montmorillonite Suspensions: Polarization Mechanisms in theLow Frequency Domain

Document Type

Article

Journal/Book Title

Soil Science Society of America Journal

Publication Date

2003

Volume

67

First Page

518

Last Page

526

Abstract

Large changes in permittivity have been observed as the frequency of an electromagnetic (EM) field applied to systems containing phases of contrasting permittivity is changed. Two mechanisms, polarization of a diffuse double layer (DDL) and polarization of the charge imbalance created by contact of two phases of different permittivity (the Maxwell-Wagner [MW] effect), are responsible for the frequency dependence of dielectric properties. To use the frequency dependence of dielectric properties to determine soil geometrical and electrochemical properties, the two mechanisms must be quantified. Three models of the frequency dependent dielectric properties, based on terms representing polarization of the electrical double layer that develops at the electrode surface, polarization of the DDL and the MW effect, were used to investigate the dielectric spectrum of montmorillonite suspensions. Dielectric spectra of suspensions of three particle-size separates (r > 1.0 μm, 1.0 μm > r > 0.2 μm, 0.2 μm > r) of homoionic (Na+ or Ca2+) were measured at a suspension density of 5.0 g of clay in 50 mL of water. Impedance plane plots suggested the contribution of three relaxation processes to the spectra. While all three models reproduced the data, they gave different interpretations of the data. Two models attributed relaxation in the kHz range to electrode polarization, relaxation at approximately 10 kHz to DDL polarization and relaxation at 1 MHz to MW polarization. The third model assigned MW polarization to the relaxation at 10 kHz and DDL polarization to the relaxation at 1 MHz.

This document is currently not available here.

Share

COinS