Factors Influencing Proton Positions in Biomolecules
Document Type
Article
Journal/Book Title
International Journal of Quantum Chemistry
Publication Date
4-1986
Publisher
Wiley-Blackwell
Volume
29
Issue
4
First Page
817
Last Page
827
Abstract
Results of quantum mechanical calculations are presented that suggest a number of mechanisms whereby protons may be shifted from one group to another along an H bond. The first factor to be considered is a stretching of the bond that drastically raises the energy barrier to transfer. It is possible to predict barriers for an arbitrary system based only on results for a simple system and knowledge of the relevant bond length in the isolated subsystems. Factors that increase the intrinsic basicity of the B group in A-H-B lead not only to a lowering of the energy of the A-HB state relative to AH-B but also to a reduction in the barrier to transfer of the proton from A to B. Ions in the vicinity of the H bond exert a powerful influence and can shift the proton to the less basic group across a gradient of several pK units. Rather than shielding the proton from the external ion, the H bond acts instead to amplify the effects of the electric field. Reorientation of the A and B groups relative to one another, i.e., bends of the H bond, also produce surprisingly large changes in the relative energies of the AH-B and A-HB states. Such bends are capable of pushing the proton across to the normally less basic group, providing a mechanism of coupling conformational changes to proton ‘pumping’ activity. It is found that the high and low pH states of a given H bond can have dramatically differnt relative populations of the AH-B and A-HB configurations. These observations are explained in terms of fundamental concepts involving electrostatic interaction energies.
Recommended Citation
Factors Influencing Proton Positions in Biomolecules S. Scheiner, P. Redfern and E. A. Hillenbrand Int. J. Quantum Chem., 1986 29, 817-827.
Comments
http://onlinelibrary.wiley.com/doi/10.1002/qua.560290420/abstract
Publisher PDF is available for download through the link above.
Published by Wiley-Blackwell in International Journal of Quantum Chemistry