Document Type
Article
Journal/Book Title
Journal of Organic Chemistry
Publication Date
2-2015
Publisher
American Chemical Society
Volume
80
Issue
4
First Page
2356
Last Page
2363
Abstract
Density functional methods are used to examine the geometries and energetics of molecules containing a phenyl ring joined to the trigonal bipyramidal SF3 framework. The phenyl ring has a strong preference for an equatorial position. This preference remains when one or two ether -CH2OCH3 groups are added to the phenyl ring, ortho to SF3, wherein an apical structure lies nearly 30 kcal/mol higher in energy. Whether equatorial or apical, the molecule is stabilized by a S···O chalcogen bond, sometimes augmented by CH···F or CH···O H-bonds. The strength of the intramolecular S···O bond is estimated to lie in the range between 3 and 6 kcal/mol. A secondary effect of the S···O chalcogen bond is elongation of the S-F bonds. Solvation of the molecule strengthens the S···O interaction. Addition of substituents to the phenyl ring has only modest effects upon the S···O bond strength. A strengthening arises when an electron-withdrawing substituent is placed ortho to the ether and meta to SF3, while electron-releasing species produce an opposite effect.
Recommended Citation
Nziko, Vincent de Paul and Scheiner, Steve, "Intramolecular S···O Chalcogen Bond as Stabilizing Factor in Geometry of Substituted Phenyl-SF3 Molecules" (2015). Chemistry and Biochemistry Faculty Publications. Paper 628.
https://digitalcommons.usu.edu/chem_facpub/628