Document Type
Article
Journal/Book Title
Nature Communications
Publication Date
10-31-2018
Publisher
Nature Research
Volume
9
First Page
1
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Last Page
10
Abstract
Electrocatalysts of the hydrogen evolution and oxidation reactions (HER and HOR) are of critical importance for the realization of future hydrogen economy. In order to make electrocatalysts economically competitive for large-scale applications, increasing attention has been devoted to developing noble metal-free HER and HOR electrocatalysts especially for alkaline electrolytes due to the promise of emerging hydroxide exchange membrane fuel cells. Herein, we report that interface engineering of Ni3N and Ni results in a unique Ni3N/Ni electrocatalyst which exhibits exceptional HER/HOR activities in aqueous electrolytes. A systematic electrochemical study was carried out to investigate the superior hydrogen electrochemistry catalyzed by Ni3N/Ni, including nearly zero overpotential of catalytic onset, robust long-term durability, unity Faradaic efficiency, and excellent CO tolerance. Density functional theory computations were performed to aid the understanding of the electrochemical results and suggested that the real active sites are located at the interface between Ni3N and Ni.
Recommended Citation
Song, Fuzhan, et al. "Interfacing Nickel Nitride and Nickel Boosts Both Electrocatalytic Hydrogen Evolution and Oxidation Reactions." Nature Communications, vol. 9, 2018, pp. 1-10. https://doi.org/10.1038/s41467-018-06728-7