Document Type
Article
Journal/Book Title
The Journal of Physical Chemistry A
Publication Date
8-1-2019
Publisher
American Chemical Society
Volume
123
Issue
33
First Page
1
Last Page
18
Abstract
Complexes were formed pairing ZCl3 (Z=P, As, Sb) with C2R4 (R= H, F, CN). The first interaction present is a pnicogen bond between the Z atom and the C=C π-bond. This bond weakens as the H atoms of ethylene are replaced by electron-withdrawing F and CN and the potential above the alkene switches from negative to positive. In the latter two cases, another set of noncovalent bonds is formed between the Cl lone pairs of ZCl3 and the π*(C=C) antibonding orbital, as well as with the F or CN substituents. The growing strength of these interactions, coupled with a large dispersion energy, more than compensates for the weak pnicogen bond in C2(CN)4, with its repulsion between areas of positive charge on each subunit, making its complexes with ZCl3 very strong, as high as 25 kJ/mol. The pnicogen bond in C2F4 is weaker than in C2H4, and its subsidiary lone pair-π bonds weaker than in C2(CN)4, so the complexes of this alkene with ZCl3 are the weakest of the set.
Recommended Citation
Chi, Z., Yan, T., Li, Q., Scheiner, S. I. (2019). Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pair−π Interactions Tuned by Substituents. The Journal of Physical Chemistry A, 123(33), 7288-7295. https://doi.org/10.1021/acs.jpca.9b06864
Comments
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpca.9b06864.