Document Type

Article

Journal/Book Title

Biochemistry

Publication Date

11-4-2019

Publisher

American Chemical Society

Award Number

NSF, Division of Chemistry (CHE) 1847674

Funder

NSF, Division of Chemistry (CHE)

Volume

58

Issue

46

First Page

4590

Last Page

4595

Abstract

Nitrogenase catalyzes the reduction of N2 to NH3, supporting all biological nitrogen fixation. Electron donors to this enzyme are ferredoxin or flavodoxin (in vivo) and sodium dithionite (in vitro). Features of these electron donors put a limit on spectrophotometric studies and electrocatalytic applications of nitrogenase. Although it is common to use methyl viologen as an electron donor for many low-potential oxidoreductases, decreased nitrogenase activity is observed with an increasing concentration of methyl viologen, limiting its utility under many circumstances. In this work, we suggest that this concentration-dependent decrease in activity can be explained by the formation of a dimer of the radical cation of methyl viologen (Me2V•+)2 at higher methyl viologen concentrations. In addition, viologens functionalized with positively and negatively charged groups were synthesized and studied using spectroscopy and cyclic voltammetry. A sulfonated viologen derivative, 1,1′-bis(3-sulfonatopropyl)-4,4′-bipyridinium radical {[(SPr)2V]}, was found to support full nitrogenase activity up to a mediator concentration of 3 mM, while the positively charged viologen derivative was not an efficient reductant of nitrogenase due to the high standard redox potential. The utility of [(SPr)2V] as an electron donor for nitrogenase was demonstrated by a simple, sensitive spectrophotometric assay for nitrogenase activity that can provide accurate values for the specific activity and turnover rate constant under argon. Under N2, the formation of ammonia was confirmed. Because of the observed full activity of nitrogenase and low overpotential, [(SPr)2V] should also prove to be valuable for nitrogenase electrocatalysis, including bioelectrosynthetic N2 reduction.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.