Document Type

Article

Journal/Book Title

ACS Energy Letters

Publication Date

8-12-2019

Publisher

American Chemical Society

Award Number

NSF, Division of Chemistry (CHE) 1847674

Funder

NSF, Division of Chemistry (CHE)

Volume

4

Issue

9

First Page

2220

Last Page

2240

Abstract

Redox flow batteries (RFBs) are regarded a promising technology for large-scale electricity energy storage to realize efficient utilization of intermittent renewable energy. Redox -active materials are the most important components in the RFB system because their physicochemical and electrochemical properties directly determine their battery performance and energy storage cost. Designable, tunable, and potentially low-cost redox-active organic compounds are promising alternatives to traditional redox-active inorganic compounds for RFB applications. Herein, the representative designs of redox-active molecules, recent development of organic RFBs (ORFBs), and advantages/disadvantages of different ORFB are reviewed. Especially the relationship between redox-active molecules’ physicochemical properties and their battery performance is discussed with an emphasis on the side reactions that cause fading of battery capacity. Finally, we provide an outlook on the development of high-performance ORFBs for practical energy storage applications.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.