Emissions of Organic Compounds from Produced Water Ponds III: Mass-Transfer Coefficients, Composition-Emission Correlations, and Contributions to Regional Emissions
Document Type
Article
Journal/Book Title
Science of the Total Environment
Publication Date
2-3-2018
Publisher
Elsevier BV
Award Number
US Dept. of Energy 12122-15
Funder
US Dept. of Energy
Volume
627
First Page
860
Last Page
868
Abstract
A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10−2 to 10+3 mg m−2 h−1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO2. This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO2. Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols.
Recommended Citation
Mansfield, Marc L., et al. “Emissions of Organic Compounds from Produced Water Ponds III: Mass-Transfer Coefficients, Composition-Emission Correlations, and Contributions to Regional Emissions.” Science of The Total Environment, vol. 627, June 2018, pp. 860–68. DOI.org (Crossref), doi:10.1016/j.scitotenv.2018.01.242.