Use of Membranes and Detailed HYSPLIT Analyses to Understand Atmospheric Particulate, Gaseous Oxidized, and Reactive Mercury Chemistry
Document Type
Article
Journal/Book Title
Environmental Science & Technology
Publication Date
1-6-2021
Publisher
American Chemical Society
Award Number
NSF, Division of Atmospheric and Geospace Sciences (AGS) 1951513
Funder
NSF, Division of Atmospheric and Geospace Sciences (AGS)
Volume
55
Issue
2
First Page
893
Last Page
901
Abstract
The atmosphere is the primary pathway by which mercury enters ecosystems. Despite the importance of atmospheric deposition, concentrations and chemistry of gaseous oxidized (GOM) and particulate-bound (PBM) mercury are poorly characterized. Here, three membranes (cation exchange (CEM), nylon, and poly(tetrafluoroethylene) (PTFE) membranes) were used as a means for quantification of concentrations and identification of the chemistry of GOM and PBM. Detailed HYSPLIT analyses were used to determine sources of oxidants forming reactive mercury (RM = PBM + GOM). Despite the coarse sampling resolution (1–2 weeks), a gradient in chemistry was observed, with halogenated compounds dominating over the Pacific Ocean, and continued influence from the marine boundary layer in Nevada and Utah with a periodic occurrence in Maryland. Oxide-based RM compounds arrived at continental locations via long-range transport. Nitrogen, sulfur, and organic RM compounds correlated with regional and local air masses. RM concentrations were highest over the ocean and decreased moving from west to east across the United States. Comparison of membrane concentrations demonstrated that the CEM provided a quantitative measure of RM concentrations and PTFE membranes were useful for collecting PBM. Nylon membranes do not retain all compounds with equal efficiency in ambient air, and an alternate desorption surface is needed.
Recommended Citation
Mae Sexauer Gustin, Sarrah M. Dunham-Cheatham, Lei Zhang, Seth Lyman, Nicole Choma, and Mark Castro Environmental Science & Technology 2021 55 (2), 893-901 DOI: 10.1021/acs.est.0c07876