Document Type
Article
Journal/Book Title/Conference
Optics Communications
Volume
474
Publisher
Elsevier BV * North-Holland
Publication Date
5-23-2020
First Page
1
Last Page
8
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Abstract
Signal attenuation in underwater communications is a problem that degrades classification performance. Several novel CNN-based (SMART) models are developed to capture the physics of the attenuation process. One model is built and trained using automatic differentiation and another uses the radon cumulative distribution transform. These models are inserted in the classifier training pipeline. It is shown that including these attenuation models in classifier training significantly improves classification performance when the trained model is tested with environmentally attenuated images. The improved classification accuracy will be important in future OAM underwater optical communication applications.
Recommended Citation
Neary, P. L., Watnik, A. T., Judd, K. P., Lindle, J. R., Flann, N. S. 2020. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams. Optics Communications. 474. 1-8 https://doi.org/10.1016/j.optcom.2020.126058