Document Type

Article

Journal/Book Title/Conference

Optics Communications

Volume

474

Publisher

Elsevier BV * North-Holland

Publication Date

5-23-2020

First Page

1

Last Page

8

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Signal attenuation in underwater communications is a problem that degrades classification performance. Several novel CNN-based (SMART) models are developed to capture the physics of the attenuation process. One model is built and trained using automatic differentiation and another uses the radon cumulative distribution transform. These models are inserted in the classifier training pipeline. It is shown that including these attenuation models in classifier training significantly improves classification performance when the trained model is tested with environmentally attenuated images. The improved classification accuracy will be important in future OAM underwater optical communication applications.

Share

COinS