Changes to dryland rainfall result in rapid moss mortality and altered soil fertility
Document Type
Article
Journal/Book Title/Conference
Nature Climate Change
Volume
2
First Page
752
Publisher
Nature Publishing Group
Last Page
755
Publication Date
2012
Abstract
Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface1, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation2, 3, 4. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to <2% after only one growing season, whereas increased temperature had no effect. Laboratory measurements identified a physiological mechanism behind the mortality: small precipitation events caused a negative moss carbon balance, whereas larger events maintained net carbon uptake. Multiple metrics of nitrogen cycling were notably different with moss mortality and had significant implications for soil fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands.
Recommended Citation
Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Chang. 2: 752-755, 10.1038/nclimate1596
Comments
This article may be accessed here.
The publisher retains the copyright to this work and may require a subscription to access the published version.
Please use publisher's recommended citation.