Fractional-order complementary filters for small unmanned aerial system navigation
Document Type
Article
Journal/Book Title/Conference
Journal of Intelligent and Robotic Systems
Volume
73
Issue
2017-01-04
Publisher
Springer Verlag
Publication Date
1-1-2014
First Page
429
Last Page
453
Abstract
Orientation estimation is very important for development of unmanned aerial systems (UASs), and is performed by combining data from several sources and sensors. Kalman filters are widely used for this task, however they typically assume linearity and Gaussian noise statistics. While these assumptions work well for high-quality, high-cost sensors, it does not work as well for low-cost, low-quality sensors. For low-cost sensors, complementary filters can be used since no assumptions are made with regards to linearity and noise statistics. In this article, the history and basics of complementary filters are included with examples, the concepts of filtering based on fractional-order calculus are applied to the complementary filter, and the efficacy of non-integer-order filtering on systems with non-Gaussian noise is explored with good success.
Recommended Citation
Coopmans, Calvin; Jensen, Austin; and Chen, YangQuan, "Fractional-order complementary filters for small unmanned aerial system navigation" (2014). Electrical and Computer Engineering Faculty Publications. Paper 169.
https://digitalcommons.usu.edu/ece_facpub/169