Document Type
Article
Journal/Book Title/Conference
Journal of Low Power Electronics
Volume
15
Issue
2
Publisher
American Scientific Publishers
Publication Date
6-1-2019
First Page
115
Last Page
128
Abstract
Near threshold computing has unraveled a promising design space for energy efficient computing. However, it is still plagued by sub-optimal system performance. Application characteristics and hardware non-idealities of conventional architectures (those optimized for nominal voltage) prevent us from fully leveraging the potential of NTC systems. Increasing the computational core count still forms the bedrock of a multitude of contemporary works that address the problem of performance degradation in NTC systems. However, these works do not categorically address the shortcomings of the conventional on-chip interconnect fabric in a many core environment. In this work, we quantitatively demonstrate the performance bottleneck created by a conventional NTC architecture in many-core NTC systems. To reclaim the performance lost due to a sub-optimal NoC in many-core NTC systems, we propose BoostNoC—a power efficient, multi-layered network-on-chip architecture. BoostNoC improves the system performance by nearly 2× over a conventional NTC system, while largely sustaining its energy benefits. Further, capitalizing on the application characteristics, we propose two BoostNoC derivative designs: (i) PG BoostNoC; and (ii) Drowsy BoostNoC; to improve the energy efficiency by 1.4× and 1.37×, respectively over conventional NTC system.
Recommended Citation
Rajamanikkam, C., Rajesh, J., Chakraborty, K., Roy, S., "Energy efficient network-on-chip architectures for many-core near-threshold computing system." Journal of Low Power Electronics 15 (2019), no. 2.