Document Type
Article
Journal/Book Title/Conference
Nature Communications
Volume
11
Publisher
Nature Publishing Group
Publication Date
6-25-2020
First Page
1
Last Page
8
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics.
Recommended Citation
Romero, G.Q., Marino, N.A.C., MacDonald, A.A.M. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat Commun 11, 3215 (2020). https://doi.org/10.1038/s41467-020-17036-4