Document Type

Article

Journal/Book Title/Conference

PLoS ONE

Volume

14

Issue

3

Publisher

PLoS

Publication Date

3-18-2019

First Page

1

Last Page

14

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Non-native, early-successional plants have been observed to maintain dominance for decades, particularly in semi-arid systems. Here, two approaches were used to detect potentially slow successional patterns in an invaded semi-arid system: chronosequence and direct observation. Plant communities in 25 shrub-steppe sites that represented a 50-year chronosequence of agricultural abandonment were monitored for 13 years. Each site contained a field abandoned from agriculture (ex-arable) and an adjacent never-tilled field. Ex-arable fields were dominated by short-lived, non-native plants. These ‘weedy’ communities had lower species richness, diversity and ground cover, and greater annual and forb cover than communities in never-tilled fields. Never-tilled fields were dominated by long-lived native plants. Across the chronosequence, plant community composition remained unchanged in both ex-arable and never-tilled fields. In contrast, 13 years of direct observation detected directional changes in plant community composition within each field type. Despite within-community changes in both field types during direct observation, there was little evidence that native plants were invading ex-arable fields or that non-native plants were invading never-tilled fields. The more-controlled, direct observation approach was more sensitive to changes in community composition, but the chronosequence approach suggested that these changes are unlikely to manifest over longer time periods, at least in part because of disturbances in the system. Results highlight the long-term consequences of soil disturbance and the difficulty of restoring native perennials in disturbed semi-arid systems.

Share

COinS