Date of Award:
12-2008
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mathematics and Statistics
Committee Chair(s)
Mevin B. Hooten
Committee
Mevin B. Hooten
Committee
Richard Cutler
Committee
Brynja Kohler
Abstract
Models for natural nonlinear processes, such as population dynamics, have been given much attention in applied mathematics. For example, species competition has been extensively modeled by differential equations. Often, the scientist has preferred to model the underlying dynamical processes (i.e., theoretical mechanisms) in continuous-time. It is of both scientific and mathematical interest to implement such models in a statistical framework to quantify uncertainty associated with the models in the presence of observations. That is, given discrete observations arising from the underlying continuous process, the unobserved process can be formally described while accounting for multiple sources of uncertainty (e.g., measurement error, model choice, and inherent stochasticity of process parameters). In addition to continuity, natural processes are often bounded; specifically, they tend to have non-negative support. Various techniques have been implemented to accommodate non-negative processes, but such techniques are often limited or overly compromising. This study offers an alternative to common differential modeling practices by using a bias-corrected truncated normal distribution to model the observations and latent process, both having bounded support. Parameters of an underlying continuous process are characterized in a Bayesian hierarchical context, utilizing a fourth-order Runge-Kutta approximation.
Checksum
966f70884ffa2e3f0527436ba60150e0
Recommended Citation
Cangelosi, Amanda, "Approximations to Continuous Processes in Hierarchical Models" (2008). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 118.
https://digitalcommons.usu.edu/etd/118
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .