Date of Award:
5-2013
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
Heng Ban
Committee
Heng Ban
Committee
Byard Wood
Committee
Leijun Li
Committee
Steven Folkman
Committee
David Hurley
Abstract
In nuclear reactors, the thermal energy generated from the nuclear reactions needs to be transferred all the way through the core of the fuels to the surrounding steam to be utilized. Therefore, thermal conductivity is considered an important thermophysical property of the fuel which needs to be measured. The nuclear fuel microstructure is known to be damaged by neutronirradiation, which can result in sharp, local changes of thermal conductivity. However, most existing thermal conductivity measurement techniques of nuclear fuel are not able to make high spatial-resolution measurements. The objective of this study was to develop a non-contact thermal conductivity measurement technique to provide micron-sized spatial-resolution capability.
In this study, two lasers are involved for the non-contact feature: one for heating and the other one for detection. A detailed parametric study is performed to optimize measurement conditions analytically and numerically. The numerical work was performed using a finite element model developed in COMSOL Multiphysics. The measurement system was validated using two calibration samples. Sources of experimental errors are discussed qualitatively and quantitatively.
An extended application of the laser-involved technique is explored to measure mechanical properties of solid materials. By measuring the natural frequencies of a cantilever beam, the elasticity constants of the material can be obtained.
Checksum
5ae50bddf4549d354036c5369517813f
Recommended Citation
Hua, Zilong, "Hybrid Photothermal Technique for Microscale Thermal Conductivity Measurement" (2013). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 1491.
https://digitalcommons.usu.edu/etd/1491
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .