Date of Award:
12-2008
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
Brent E. Stucker
Committee
Brent E. Stucker
Committee
David W. Britt
Committee
Thomas H. Fronk
Committee
Leijun Li
Committee
Wenbin Yu
Abstract
This research is a systematic study exploring a new fabrication methodology for long-fiber-reinforced metal matrix composites (MMCs) using a novel additive manufacturing technology. The research is devoted to the manufacture of long-fiber-reinforced MMC structures using the Ultrasonic Consolidation (UC) process. The main objectives of this research are to investigate the bond formation mechanisms and fiber embedment mechanisms during UC, and further to study the effects of processing parameters on bond formation and fiber embedment, and the resultant macroscopic mechanical properties of UC-made MMC structures.
From a fundamental research point of view, bond formation mechanisms and fiber embedment mechanisms have been clarified by the current research based on various experimental observations. It has been found that atomic bonding across nascent metal is the dominant bond formation mechanism during the UC process, whereas the embedded fiber are mechanically entrapped within matrix materials due to significant plastic deformation of the matrix material during embedment.
From a manufacturing process point of view, the effects of processing parameters on bond formation and fiber embedment during the UC process have been studied and optimum levels of parameters have been identified for manufacture of MMC structures. An energy-based model has been developed as a first step toward analytically understanding the effects of processing parameters on the quality of ultrasonically consolidated structures.
From a material applications point of view, the mechanical properties of ultrasonically consolidated structures with and without the presence of fibers have been characterized. The effects on mechanical properties of UC-made structures due to the presence of embedded fibers have been discussed.
Checksum
aa407dd6eb3e9fbd0b7d3ddf1561e45c
Recommended Citation
Yang, Yanzhe, "Fabrication of Long-Fiber-Reinforced Metal Matrix Composites Using Ultrasonic Consolidation" (2008). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 213.
https://digitalcommons.usu.edu/etd/213
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work was revised and made publicly available electronically on August 3, 2011.