Date of Award:
5-2009
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
David K. Geller
Committee
David K. Geller
Committee
R. Rees Fullmer
Committee
Barton L. Smith
Abstract
As NASA prepares to return humans to the moon and establish a long-term presence on the surface, technologies must be developed to access previously unvisited terrain regardless of the condition. Among these technologies is a guidance, navigation and control (GNC) system capable of safely and precisely delivering a spacecraft, whether manned or robotic, to a predetermined landing area. This thesis presents detailed research of both terrain-relative navigation using a terrain-scanning instrument and beacon-relative radiometric navigation using beacons in lunar orbit or on the surface of the moon. The models for these sensors are developed along with a baseline sensor suite that includes an altimeter, IMU, velocimeter, and star camera. Linear covariance analysis is used to rapidly perform the trade studies relevant to this problem and to provide the navigation performance data necessary to determine which navigation method is best suited to support a 100 m 3-σ navigation requirement for landing anytime and anywhere on the moon.
Checksum
a14161f74e0eadecbc8382444a90096a
Recommended Citation
Christensen, Daniel Porter, "Terrain-Relative and Beacon-Relative Navigation for Lunar Powered Descent and Landing" (2009). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 253.
https://digitalcommons.usu.edu/etd/253
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .