Date of Award:
5-2014
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Biological Engineering
Committee Chair(s)
Leijun Li
Committee
Leijun Li
Committee
David Britt
Committee
Anhong Zhou
Committee
Gary Stewardson
Committee
Ron Sims
Abstract
Polyetheretherketone (PEEK) is a Federal and Drug Administration (FDA) approved biomaterial that has been used as an orthopedic implant material due to its inherent properties. Laser etching has become a popular means to create identification markers on the individual implants as required by the FDA. The interaction of laser energy with polymeric materials could potentially cause changes in the material's biocompatibility and mechanical properties. The objective of this study was to determine the effect of laser energy on the biocompatibility and mechanical properties of implantable PEEK by measuring contact angle, micro-tensile testing, nite-element modeling (FEM), and biocompatibility testing according to International Organization for Standardization (ISO) 10993 for cytotoxicity. The results of the study showed that the etching characteristics were mostly in by the laser power and the laser pulse spacing. The mechanical properties were degraded by the laser and the tensile strength of the material was decreased by 50% is some cases. The laser, however, did not affect the biocompatibility. The biocompatibility testing of the material showed no cytotoxic effect using an agar overlay method. The contact angle measurements demonstrated that the laser etching produced a hydrophobic effect to the surface. The FEM model demonstrated a good correlation between the laser power and the vaporization of the PEEK material. The results of the study showed the effect of laser energy on biocompatibility and mechanical properties.
Checksum
c8de99aa4c110e78a2954d2c76a16ed1
Recommended Citation
Deceuster, Andrew I., "The Effects of Laser Etching on Biocompatability and Mechanical Properties of Polyetheretherketone" (2014). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 3085.
https://digitalcommons.usu.edu/etd/3085
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .