Date of Award:

5-2014

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Applied Economics

Committee Chair(s)

Paul Jakus

Committee

Paul Jakus

Committee

Man-Keun Kim

Committee

Ryan Bosworth

Committee

Nanette Nelson

Abstract

When estimating economic value associated with changes in water quality, recreation demand models typically depend upon either (i) biophysical measures of water quality as collected by natural scientists or (ii) the perception of water quality by recreationists. Models based upon biophysical metrics (such as oxygen concentration, pollutant concentrations, Secchi depth measurements, etc.) operate on the assumption that people can perceive and respond to these metrics, or respond to factors that are, indeed, correlated with the biophysical measure. Economists have often estimated willingness-to-pay (WTP) measures associated with unit changes in biophysical measures without examining the degree to which the measures are truly correlated with perceptions. Using biophysical measures of water quality and recreation use data recently collected in Utah, this study links technical measures of water quality at a water body to survey respondents’ perceptions of water quality at the same site. This approach is akin to estimating an ecological production function wherein biophysical measures are “inputs” to water quality perceptions (the output). Truncated Negative Binomial models of water-based recreation are used to estimate welfare effects of changes in water quality as measured through (i) unit changes in biophysical measures, (ii) unit changes in perceptions, and (iii) unit changes in biophysical as they change perceptions through the ecological production function.

Checksum

ab2790b0c09eb8bf2b9580a67e173d0c

Included in

Economics Commons

Share

COinS