Date of Award:

5-2014

Document Type:

Thesis

Degree Name:

Doctor of Philosophy (PhD)

Department:

Civil and Environmental Engineering

Committee Chair(s)

David G. Tarboton

Committee

David G. Tarboton

Committee

Christopher M. U. Neale

Committee

Jeffery S. Horsburgh

Committee

David E. Rosenberg

Committee

Jiming Jin

Abstract

The Hindu-Kush Himalayan region possesses a large resource of snow and ice, which acts as a freshwater reservoir for irrigation, domestic water consumption or hydroelectric power for billions of people in South Asia. Monitoring hydrologic resources in this region is challenging because of the difficulty of installing and maintaining a climate and hydrologic monitoring network, limited transportation and communication infrastructure and difficult access to glaciers. As a result of the high, rugged topographic relief, ground observations in the region are extremely sparse. Reanalysis data offer the potential to compensate for the data scarcity, which is a barrier in hydrological modeling and analysis for improving water resources management. Reanalysis weather data products integrate observations with atmospheric model physics to produce a spatially and temporally complete weather record in the post-satellite era. This dissertation creates an integrated hydrologic modeling system that tests whether streamflow prediction can be improved by taking advantage of the National Aeronautics and Space Administration (NASA) remote sensing and reanalysis weather data products in physically based energy balance snow melt and hydrologic models. This study also enhances the energy balance snowmelt model by adding capability to quantify glacier melt. The novelty of this integrated modeling tool resides in allowing the user to isolate various components of surface water inputs (rainfall, snow and glacier ice melt) in a cost-free, open source graphical-user interface-based system that can be used for government and institutional decision-making. Direct, physically based validation of this system is challenging due to the data scarcity in this region, but, to the extent possible, the model was validated through comparison to observed streamflow and to point measurements at locations in the United States having available data

Checksum

eb6a46af0427d54fe93f250a1db26589

Share

COinS