Date of Award:

5-2015

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Civil and Environmental Engineering

Committee Chair(s)

Judith L. Sims

Committee

Judith L. Sims

Committee

William Doucette

Committee

R. Ryan Dupont

Abstract

Utah State University Division of Environmental Engineering student, under the direction of Ms. Judith L. Sims, has investigated the fate of six pharmaceuticals and personal care products (PPCPs) in conventional and engineered on-site wastewater drain fields. The presence of PPCPs in the environment, especially in aquatic environments, has raised awareness to the effects of PPCPs on aquatic life and the fate of these PPCPs, and has caused regulators to become more involved in setting requirements for the removal of PPCPs from wastewater.

This research investigated the fate of caffeine, acetaminophen, carbamazepine, sulfamethoxazole, progesterone, and fluoxetine in laboratory scaled columns that simulate conventional pipe and gravel on-site wastewater drain fields as well as engineered columns similar to the pipe and gravel simulated columns, but with the addition of media below the gravel layer to enhance PPCP removal via sorption and biodegradation. Results from the month long experiment showed that sulfamethoxazole removal in the columns representing conventional systems peaked at 74%. The other PPCPs were non-detectable. Sulfamethoxazole removal increased to 81% in columns engineered with a layer of sphagnum peat moss beneath the gravel layer and below the method detection limit (5.5 ng/mL) in columns engineered with a layer of charred straw beneath the gravel layer. No other PPCPs analyzed from the engineered columns were detected. Batch experiments indicated that sorption is the main mechanism for PPCP removal with the exception of progesterone, where biodegradation is a major mechanism.

Checksum

c6c81df3930df2883c9b1eb301794c8f

Share

COinS