Date of Award:
5-2009
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Civil and Environmental Engineering
Committee Chair(s)
Luis A. Bastidas
Committee
Luis A. Bastidas
Committee
Mac McKee
Committee
Lawrence E. Hipps
Abstract
Uncertainty in model predictions is associated with data, parameters, and model structure. The estimation of these contributions to uncertainty is a critical issue in hydrology. Using a variety of single and multiple criterion methods for sensitivity analysis and inverse modeling, the behaviors of two state-of-the-art land surface models, the Simple Biosphere Model 3 and Noah model, are analyzed. The different algorithms used for sensitivity and inverse modeling are analyzed and compared along with the performance of the land surface models. Generalized sensitivity and variance methods are used for the sensitivity analysis, including the Multi-Objective Generalized Sensitivity Analysis, the Extended Fourier Amplitude Sensitivity Test, and the method of Sobol. The methods used for the parameter uncertainty estimation are based on Markov Chain Monte Carlo simulations with Metropolis type algorithms and include A Multi-algorithm Genetically Adaptive Multi-objective algorithm, Differential Evolution Adaptive Metropolis, the Shuffled Complex Evolution Metropolis, and the Multi-objective Shuffled Complex Evolution Metropolis algorithms. The analysis focuses on the behavior of land surface model predictions for sensible heat, latent heat, and carbon fluxes at the surface. This is done using data from hydrometeorological towers collected at several locations within the Large-Scale Biosphere Atmosphere Experiment in Amazonia domain (Amazon tropical forest) and at locations in Arizona (semiarid grass and shrub-land). The influence that the specific location exerts upon the model simulation is also analyzed. In addition, the Santarém kilometer 67 site located in the Large-Scale Biosphere Atmosphere Experiment in Amazonia domain is further analyzed by using datasets with different levels of quality control for evaluating the resulting effects on the performance of the individual models. The method of Sobol was shown to give the best estimates of sensitivity for the variance-based algorithms and tended to be conservative in terms of assigning parameter sensitivity, while the multi-objective generalized sensitivity algorithm gave a more liberal number of sensitive parameters. For the optimization, the Multi-algorithm Genetically Adaptive Multi-objective algorithm consistently resulted in the smallest overall error; however all other algorithms gave similar results. Furthermore the Simple Biosphere Model 3 provided better estimates of the latent heat and the Noah model gave better estimates of the sensible heat.
Checksum
bcceeab928e2e1b6f9dca235325d7d28
Recommended Citation
Roundy, Joshua K., "Uncertainty Analysis for Land Surface Model Predictions: Application to the Simple Biosphere 3 and Noah Models at Tropical and Semiarid Locations" (2009). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 404.
https://digitalcommons.usu.edu/etd/404
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .