Date of Award:

5-2015

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Mechanical and Aerospace Engineering

Committee Chair(s)

Stephen A. Whitmore

Committee

Stephen A. Whitmore

Committee

David Geller

Committee

R. Rees Fullmer

Abstract

Hybrid Rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion charactersitics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. these high aspect ratios produce further reduced fuel regression rate and trust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.

Checksum

d5cb5abd23ff874fafe2b4e6a5d91b04

Share

COinS