Date of Award:
5-1991
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Nutrition, Dietetics, and Food Sciences
Department name when degree awarded
Nutrition and Food Sciences
Committee Chair(s)
Conly L. Hansen
Committee
Conly L. Hansen
Committee
David K. Stevens
Committee
Darrell N. Warner
Abstract
This study examined biological mercury removal from soil using mercury-resistant bacteria in soil microcosms. Mercuric chloride was used to artificially contaminate Kidman soil to mercury concentrations of 5 ppm and 10 ppm. Soil moisture content was maintained at three levels, 20%, 30% and 50%. Mercury resistant-bacteria were added to soil samples and the mercury removal rate was compared to control samples without added bacteria. Mercury removal rate was initially enhanced by the addition of bacteria. After 30 days, no difference was observed between samples and controls with initial mercury concentration of 5 ppm when soil moisture content was 20%. At an initial mercury concentration of 10 ppm, soil samples had less mercury remaining than controls after 30 days. Autoclaved soil had a decreased mercury removal rate compared to soil not autoclaved. Addition of nutrient (sucrose) did not increase the mercury removal rate. A slurry-type bioreactor was found to be more efficient than a non-stir type. After 30 days of continuous stirring, 85-90% of the added mercury (10 ppm) was removed, while under the same conditions except no stirring, only around 60% of the mercury was removed.
Overall, biological detoxification of mercury from contaminated soil can be achieved by using a slurry-type bioreactor with addition of mercury-resistant bacteria.
Checksum
cff862370582b08ca3a9d3aa2646775b
Recommended Citation
Zhang, Shiying, "Biological Detoxification of Mercury Contaminated Soil" (1991). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 5384.
https://digitalcommons.usu.edu/etd/5384
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .