Date of Award:

5-2010

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Civil and Environmental Engineering

Department name when degree awarded

Biological and Irrigational Engineering

Committee Chair(s)

David W. Britt

Committee

David W. Britt

Committee

Chih-Hu Ho

Committee

Timothy A. Taylor

Committee

Anne J. Anderson

Committee

Soonjo Kwon

Abstract

Hollow fiber membranes (HFMs) formed through phase inversion methods exhibit specific physicochemical characteristics and generally favorable surface and mechanical properties, supporting their use in diverse applications including ultrafiltration, dialysis, cell culture, bioreactors, and tissue engineering. Characterization of, and modifications to, such membranes are important steps in achieving desired characteristics for specific applications.

HFMs subject to gas, irradiation, and chemical sterilization techniques were characterized based on several analytical techniques. It was revealed that these common sterilization techniques can cause inadvertent changes to HFM properties. While these changes may cause detrimental effects to HFMs used in filtration, the methods of sterilization are also presented as a facile means of tuning properties toward specific applications.

Modifications to HFM surface chemistries were also sought as a method of adsorbing bacterial lipopolysaccharide (LPS) from solutions used in hemodialysis treatments and bioprocessing applications. It was found that additives such as polyvinylpyrrolidone (PVP), polyethyleneglycol (PEG), and poly-L-lysine (PLL) can facilitate adsorption capacities of HFMs toward LPS. Additionally, chemical changes are presented as a means of preferentially adsorbing LPS to specific locations on the HFM surface.

Checksum

ed4924f02da8dc8f53f789900563f2b1

Share

COinS