Date of Award:
8-2017
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Geosciences
Department name when degree awarded
Geology
Committee Chair(s)
James P. Evans
Committee
James P. Evans
Committee
Kelly Bradbury
Committee
Elizabeth Petrie
Abstract
In the subsurface faults can act as both barriers and conduits for fluids or gases such as CO2, hydrocarbons, or water. It is often thought that faults in porous rocks such as sandstone are barriers to fluid flow. In this study we show that this is not always the case. In sandstones like the Cedar Mesa Sandstone it is very important to understand the relationships between this history of fault slip and fluid flow. Better understanding of how fluids migrate through faults and the damaged areas surrounding these faults has strong significance to the oil and gas industry.
In this study we examine a group of faults and their surrounding damage zones near Hite, Utah. We analyze three of these small-scale faults in more detail. In doing so we give insights into how these faults and their damage zones can effect fluid migration as well as the porosity and permeability in the Cedar Mesa Sandstone. Whole rock geochemistry, X-ray diffraction mineralogy, permeability data, petrography, ultraviolet photography, and outcrop observations were used to gain insights into cross-cutting relationships, past fluid compositions, and fault characteristics.
From the data that was collected from these faults we have begun to describe a series of structural and fluid flow events. This series allows us to say that small-scale faults and fractures are features by which fluids can migrate preferentially. In this series of events we isolate two separate phases of movement. The first phase of movement being has a component of shear in which the edges of the fractures are not moving directly apart. This event is accompanied by a fluid flow event the emplaced iron oxide in the fractures and the surrounding formation. The second event is a phase when the faults become reactivated by a stress that created open mode fractures. This second is accompanied by a fluid flow event that has high calcium content and emplaces calcite in the fractures. Throughout this study we give evidence to support this series of movement and fluid events.
Checksum
23cee2c8507e8d8e839a543b044e730b
Recommended Citation
Curtis, Daniel J., "Analysis of the Hite Fault Group, Southeast Utah: Insights into Fluid Flow Properties in a Reservoir Analog" (2017). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6538.
https://digitalcommons.usu.edu/etd/6538
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .