Date of Award:
8-2017
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
David K. Geller
Committee
David K. Geller
Committee
R. Rees Fullmer
Committee
Stephen A. Whitmore
Committee
James T. Wheeler
Committee
Richard G. Cobb
Abstract
Geosynchronous Equatorial Orbit (GEO) is critical to Earth communications, weather monitoring, and national defense. Orbit estimation of GEO objects is difficult due to physical constraints placed on ground-based tracking devices such as weather, object range, and tracking frequency restrictions. These constraints are commonly mitigated through the use of two-way signaling devices for cooperative GEO satellites. However, determining the position and velocity of uncooperative GEO satellites and/or objects is more challenging. The objective of this dissertation is to quantify the increased orbital accuracy of objects in the GEO catalog when the Air Force Space Command Space Surveillance Network (AFSPC SSN) is augmented with space-based angles-only measurements from a sensor in a unique near-GEO orbit. Linear covariance theory and analysis provides an efficient method to determine the covariance of the position and velocity of an uncooperative GEO object, while incorporating uncertainties in the dynamics and sensor errors. Once this covariance is determined, an error budget analysis is performed to determine the major sources of uncertainty contributing to position errors of objects in the GEO catalog. As a result, it is shown through linear covariance analysis that incorporating measurements from a space-based sensor in a near-GEO orbit increases the orbital accuracy of GEO objects when compared to the orbital accuracy achieved with AFSPC SSN measurements alone.
Checksum
79d471234292a928e435d011523d6668
Recommended Citation
Andrews, Blythe A., "Analysis of Angles-Only Hybrid Space-Based/Ground-Based Approach for Geosynchronous Orbit Catalog Maintenance" (2017). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6550.
https://digitalcommons.usu.edu/etd/6550
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .