Date of Award:
5-2002
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Geosciences
Department name when degree awarded
Geology
Committee Chair(s)
James P. Evans
Committee
James P. Evans
Committee
Zoe Shippton
Committee
Susanne Janecke
Abstract
Rupture of the Chelungpu fault during the September 21, 1999, 7.6 Mwearthquake in Taiwan caused a 90-Jr,m-long surface rupture with variable displacement along strike. Analysis of core from two holes drilled through the fault zone, combined with geologic mapping and detailed investigation from three outcrops, define the fault geometry and physical properties of the Chelungpu fault in its northern and southern regions. In the northern region, the fault dips 45-60° east parallel to bedding and consists of a narrow (1-20 cm) core of dark-gray, sheared clay gouge at the base of a 30-50 m zone of increased fracture density that is confined asymmetrically to the hanging wall. Microstructural analysis of the fault gouge indicates the presence of extremely narrow clay zones (50-300 μm thick) that are interpreted as the fault rupture surfaces. Few shear indicators are observed outside of the fault gouge, which implies that slip was localized in the gouge in the northern region. Slip localization along a bed-parallel surface resulted in less high-frequency ground motion and larger displacements during the earthquake than in the southern region. Observations from the southern region indicate that the fault dips 20-30° at the surface and consists of a wide (20- 70 m-thick) zone of sheared, foliated shale with numerous gouge zones. A footwall-ramp geometry juxtaposes 2000-3000 m of flat-lying Quaternary Toukoshan Formation in the footwall with Pliocene and Miocene, east-dipping siltstone and muds tone in the hanging wall. The wide, diffuse fault zone contributed to the lower displacement and higher frequency ground motion in the southern region during the 1999 earthquake. The structure in the northern region is the result of the fault being a very young (ka) fault segment in the hanging wall of an older segment of the Chelungpu fault, buried in the Taichung basin. The fault in the southern region is located on an older (~1 Ma) fault trace. The contrasting fault properties in the different regions are responsible for the variability in strong-motion and displacement observed during the 1999 earthquake.
Checksum
aa8328ef95c76590b225a93205734186
Recommended Citation
Heermance, Richard V., "Geometry and Physical Properties of the Chelungpu Fault, Taiwan, and Their Effect on Fault Rupture" (2002). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6720.
https://digitalcommons.usu.edu/etd/6720
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .