Date of Award:
5-1993
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Plants, Soils, and Climate
Department name when degree awarded
Plants, Soils, and Biometeorology
Committee Chair(s)
Bruce Bugbee
Committee
Bruce Bugbee
Committee
Martyn Caldwell
Committee
Keith Mott
Committee
Dave Smart
Abstract
Wheat canopies were grown at either 330 or 1200 μmol mol-1 CO2 in sealed controlled environments, where carbon fluxes and radiation interception were continuously and nondestructively measured during their life cycles. The effects of elevated CO2 on daily growth rates, canopy quantum yield, canopy and root carbon use efficiencies, and final dry mass were calculated from carbon flux measurements in an open gas exchange system. Dry biomass at harvest was predicted from the gas exchange data to within ± 8%. The greatest effect of elevated CO2 occurred in the first 15d after emergence; however, several physiological processes were enhanced throughout the life cycle. Elevated CO2 increased average net photosynthesis by 30%, average shoot respiration by 10%, and average root respiration by 40%. Crop growth rate, calculated from gas exchange data, was 30% higher during both vegetative growth and reproductive growth. Elevated CO 2 did not affect radiation interception, but increased average canopy quantum yield from 0.039 to 0.051 (31%). Average canopy carbon use efficiency was increased by 12%. Although harvest index was unaffected, these increases in the physiological determinants of yield by elevated CO2 resulted in a 14% increase in seed yield.
Checksum
af865c1f6b514e322c4651fb86d16117
Recommended Citation
Monje, Oscar A., "Effects of Elevated CO2 on Crop Growth Rates, Radiation Absorption, Canopy Quantum Yield, Canopy Carbon Use Efficiency, and Root Respiration of Wheat" (1993). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6763.
https://digitalcommons.usu.edu/etd/6763
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .