Date of Award:
5-1952
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mathematics and Statistics
Department name when degree awarded
Mathematics
Committee Chair(s)
Joe Elich
Committee
Joe Elich
Abstract
The purpose of this paper is to present a study of different methods of solving certain boundary value problems. In particular it will be concerned with solutions by classical methods and by operational methods. Of the various operational methods that may be considered, the Laplace transformation appears to be the best(1) and will be used in this paper.
In the 1951 Encyclopedia Americana Annual is this report on the activities in applied mathematics for the previous year:
Progress was made on the general problem of finding the eigenvalues of matrices and systems of differential equations. Considerable effort was also expended in seeking methods of solution for the partial differential equations of physics.
This gives an indication of the importance of this type of work at the present time. With the development of atomic energy, jet airplanes, and guided missiles, have come many new and different boundary value problems. The solution of these problems is an important factor in the development.
The paper will include a general description of what is meant by boundary value problem, followed by some examples. These examples will be solved by classical methods and then by operational methods (Laplace transformation). Then where possible, comparisons between the two methods will be made. From the study of the solutions of these examples conclusions will be drawn.
Checksum
29733491d73948dfd4f85e7e3ce40418
Recommended Citation
Stoddard, Dan W., "The Solution of Boundary Value Problems by Use of the Laplace Transformation as Compared with Classical Methods" (1952). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6774.
https://digitalcommons.usu.edu/etd/6774
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .